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ABSTRACT
We show that Hausdorff measures of different dimensions are not Borel
isomorphic; that is, the measure spaces (R, B, H*) and (R, B, H!) are not
isomorphic if s # ¢, s,t € [0, 1], where B is the o-algebra of Borel subsets
of R and H? is the d-dimensional Hausdorff measure. This answers a
question of B. Weiss and D. Preiss.

To prove our result, we apply a random construction and show that
for every Borel function f : R — R and for every d € [0, 1] there exists
a compact set C' of Hausdorff dimension d such that f(C) has Hausdorff
dimension < d.

We also prove this statement in a more general form: If A C R" is Borel
and f: A — R™ is Borel measurable, then for every d € [0, 1] there exists a
Borel set B C A such that dim B = d-dim A and dim f(B) < d-dim f(A).

1. Introduction

The question whether Hausdorff measures of different dimensions are Borel iso-
morphic or not, has been around for several years. This problem is attributed to
B. Weiss and D. Preiss, see also [5]. Let H? denote the d-dimensional Hausdorff
measure and let B denote the o-algebra of Borel subsets of R.
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THEOREM 1.1: For every 0 < d; < dy < 1 the measure spaces (R, B, H%)
and (R, B, H%) are not isomorphic. Moreover, there does not exist a Borel
bijection f : R — R such that for any Borel set B C R

(1) 0 < H™(B) < 00 <= 0 < H"(f(B)) < oo.

The analogous theorem in R™ holds too (see Theorem 5.7).

On the other hand, M. Elekes [1] has proved that the continuum hypothesis
implies that the measure spaces (R, My, H®) and (R, Mg, HY) are isomor-
phic whenever s, ¢ € (0,1), where My is the o-algebra of measurable sets with
respect to H.

In the same article, M. Elekes suggests a method to give a partial solution to
the Borel isomorphism problem (Theorem 1.1) and asks the following question.

Question 1: Fix 0 < a < 1. Is it true that every Borel function f : R — R is
Hélder continuous of exponent « on a set Hy of Hausdorff dimension 1 — a?

The author of the present article has answered Question 1 in the positive [2].

It is easy to see that the positive answer implies that ¢ < s/(1 — s) whenever
the s-dimensional and the t-dimensional Hausdorff measures are Borel isomor-
phic. Unfortunately this approach does not seem to lead to Theorem 1.1 in its
whole generality. Note that 1 — « is the best we can have for the dimension of
Hy, since a typical continuous function is not Hélder continuous of exponent o
on any set of dimension larger than 1 — «, as shown by M. Elekes in [1].

Let dim H denote the Hausdorff dimension of the set H.

THEOREM 1.2: Let f : R — R be Borel (or Lebesgue) measurable. For ev-
ery 0 < d < 1 there exists a compact set C C R such that dimC = d and
dim f(C) < d.

Theorem 1.2 clearly implies Theorem 1.1: Let f be Borel measurable and
choose a d for which d; < d < dy. By applying Theorem 1.2 we get a compact
set C of dimension d with dim f(C) < d. Since d; < d, there exists a Borel
subset B of C for which 0 < H%(B) < ¢ (see e.g., [3]). Now f(B) C f(C), so
it has dimension at most d, which implies that 7% (f(B)) = 0. So f cannot be
an isomorphism of the measure spaces (R, B, H%) and (R, B, H%), and cannot
satisfy (1).

To prove Theorem 1.2 it is clearly enough to show the following.



Vol. 164, 2008 HAUSDORFF MEASURES 287

THEOREM 1.3: Suppose that K is a compact set of positive Lebesgue measure
and f : K — R is continuous. For every 0 < d < 1 there exists a compact set
C C K of Hausdorff dimension d such that f(C) has Hausdorff dimension at
most d.

The sketch of the proof is the following. We define a large class of random
constructions such that each of them gives a Cantor set F of dimension at
most d almost surely (Section 3). Then, for the given K and f, we choose
a random construction of this class which gives a set F' for which F' C f(K)
and dim f~1(F) > d almost surely. This will imply the theorem with a simple
additional argument (Section 4).

As it can be expected, Theorem 1.2 has the following generalisation (proved
in Section 5).

THEOREM 1.4: Let A C R™ be a Borel set and f : A — R™ Borel measurable.
Then for every 0 < d < 1 there exists a Borel set B C A such that dim B =
d-dim A and dim f(B) < d - dim f(A).

Notation: Let A denote the one dimensional Lebesgue measure. For a (Borel)
measure g let I;(u) denote the t-dimensional energy of p; that is, I(u) =
J[ |z —y|~"du(z) du(y). For Borel measures py, (k € N) and p, 1 — p denotes
that uj weakly converges to pu. Let supp p denote the support of the measure
-

We denote by N the set of non-negative integers. We identify each natural
number with the set of its predecessors: n = {0,1,...,n — 1}.

By diam H we mean the diameter of the set H. Let H5, denote the s-
dimensional Hausdorff pre-measure; that is, for any H C R

H3(H) =

inf{ Z(diam I,)° : {I,}nen is a sequence of intervals and H C U In}.
neN neN

2. Preliminaries

We start with some (probably well-known) statements which we shall use in the
sequel.
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LEMMA 2.1: Suppose that p and uy (k € N) are probability measures on R
such that py — p. Then pg X pr — @ X p.

Proof. We have to show that for every compactly supported continuous function
h:R* = R, [ohd(pe X px) — [go hd(u x p). Clearly it is enough to show
this for a dense subset of the compactly supported continuous functions. It is
well-known that functions of the form

Z fi()gi(y) (f,9: R — R continuous functions with compact support)

are dense, so it is enough to check that

f()()(ﬂkxukﬂ/f (s X 1),

R2
By Fubini,

F@9w) dn x ) = [ £ dus(a) [ 900 din(o)
R2 R R
which tends to
[ 1@ [ st / F@)gw) dip 1)
as k — oo, using pur — p and Fubini again.

LEMMA 2.2: Suppose that py (k € N) are probability measures on R with
support in [—R, R] for some R > 0. If p, — p then I;(p) < liminf Iy (ug).

Proof. Let ¢ be a compactly supported continuous function on the plane which
equals 1 on the square [— R, R]? and for which 0 < ¢(z,y) < 1 everywhere. For
each positive integer i define h; : R? — R by setting

hi(z,y) = ¢(x,y) - min(|z —y| ™", i)
Using Lemma 2.1 we have
/hi(ac, y)dpdu = lilzn/hi(x,y) dpg dug, < likminf/ |z — y| " duy dp
= likm inf Iy (g ).

The support of 1 x p is in [—R, R]? since the support of juy is in [- R, R] for all
k, so we have

lim [ hi(z,y) du(z) du(y) =/Ifc—y|‘t dp(z) du(y) = I (p).

1—00
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Thus I (p) < Uminfy oo T (g ). |

LEMMA 2.3: Let 0 < ¢t < 1, H be a compact set in R and I = [0, \(H)| an
interval. Then

//|ac—y| L dA(z) dA(y //|x—y|_td)\ ) dA(y) = e A(H)2"

where c¢; is a constant depending only on t.
Proof. Let ¢ : H — [0, \(H)] be the following function:
p(h) = )\((—oo, hlN H)

Using first the fact that ¢ is a contraction and then that it is a measure pre-
serving transformation between A|g and \|;, we obtain

/H/H & — y|~* dA(x) dA(y)
< [ [ 1o — eI @ axw)
:/I/I|$*y|‘tdA(z)dA(y)
_ /m /m N — AH) |~ AH? dA) dAGy)

/ / 2’ — o/ |t dA(2') dAGY)
[0,1] J[0,1]
2—t

where ¢; is finite if ¢ < 1. |

= Ct)\(

3. Random construction and upper estimate
Let M > 3 and m be integers with 2 < m < M — 1. Let
M=<¥ = {(ig, i1, in-1):n €N, i; € {0,1,...,.M — 1} = M}.

We will consider M <% as a set of multi-indices and also as the M-adic tree with
root (), where every node has M children. For an i € M <% let |i| denote the
length of the multi-index; that is, the level of the node 1.

Definition 1: A representation of M <% is a mapping ¢ which maps each node i
to a non-trivial compact interval ¢(i) C R such that



290 ANDRAS MATHE Isr. J. Math.

e for every node 7 and its children ij (j € M) we have ¢(ij) C ¢(i), and
o for every two distinct 7,57 € M, ¢(ij) and ¢(ij’) can have at most one
point in common.

Now we shall choose a “random m-adic subtree” S of M <% in the follow-
ing way. Let X; (i € M<“) be independent random variables with uniform
distributions over the set of m-element subsets of M. That is, for each set
T C{0,1,...,M — 1} of m elements

P(X;=1T)=1/(})).
Define the random subtree as
S = {(i0,i1, .. in-1) € MY 1 i5 € X, y for every 0 < j <n —1}.

1yt
So @ € S, and for each i € S exactly m children of i are in S. It is easy to see
that

H{ieS: i =n}=m"
for every n € N.

Given a representation ¢ of M <%, consider the closed sets F; = ¢(i) (i €
M<%) and the random closed sets

Fr=|J{F:ieSlil=n} (neN).
Then Fy = F' D F! D> F?> ..., Put

F:ﬂF".

We can consider F' as the image of the random m-adic subtree S.

PROPOSITION 3.1: For any representation of M <%, the random closed set F
defined above has Hausdorfl dimension at most logm/log M almost surely.

Proof. Let 1 > s > logm/log M be arbitrary and ¢ = m/M?, thus ¢ < 1. We
cover F™ with those intervals F;, for which |i| = n and ¢ € S. For any ¢ of
length n we have

P(ie S)=(M/m)",

hence,

IE< 3 (diamﬂ)5> - (%)n S (diam F)*.

|i]=n |i]=n
€S
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Since the intervals F; (|i| = n) are almost disjoint (two of them can only have one
point in common), ZM:n diam F; < D 4f Jiam Fy. Thus, applying Jensen’s
inequality to the concave function z — x°, we obtain

()" S = (5)" () = () = o

|i]=n
Therefore,
E(H;o(F)) < E(H;O(F”)) < E( Z (diamFi)S) < D3q".
|i]=n
€S

Since this is true for every n, we get that
E(H5.(F)) =0,
thus HZ (F) = 0 almost surely, so H*(F) = 0 almost surely. Because

s > logm/logM can be chosen arbitrarily, the dimension of F is at most
logm/ log M almost surely. ]

4. Lower estimate

Proof of Theorem 1.3. If there exists an y € f(K) for which f~1(y) is of positive
measure, then we can choose a compact set C C f~1(y) of arbitrary Hausdorff
dimension d (0 < d < 1), and clearly f(C) = {y} has Hausdorff dimension
at most d. Thus, we may assume that for every y € f(K) the set f~1(y)
has Lebesgue measure zero. Without loss of generality, we may suppose that
AMK) =1.

Now we define the particular representation of M <% which is adequate for
our needs. All the endpoints of the intervals ¢(i) (i € M <) will be contained
in f(K). We define ¢(0) to be the smallest interval which contains f(K). If
an interval is already defined, then its M subintervals (its children) are chosen
such that their preimages (with respect to f) have equal Lebesgue measure:
1/M times the Lebesgue measure of the preimage of the interval. Now we give
a more precise definition.

Define ¢ : f(K) — R as
() = A{z € K: f(z) < z}).

Since the inverse image of any point in f(K) has measure zero, this is a contin-
uous increasing function, and its image is the interval [0, A(K)].
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For an i € M <% let

lil

3 ij—1
y1=maX{y€f =Z]]}

j=1
i
yémin{yef(K):w +ZZ] 1}~
j=1
Let F; = ¢(i) = [yi,y3]. It is obvious from the definition that
M-1
Flio,in) 2 | Flior v
j=0

ASTHE)) = A{z € K f(2) € F}) = 1/M

and that ¢ is a representation of M <%,

Now let S be a random m-adic subtree of M <%, and define the random closed
sets

Fr=|J{Fi:ieSlil=n} (neN),
F=()F"
neN

the same way as before. From Proposition 3.1, F' has Hausdorff dimension at
most logm/ log M almost surely. Hence F' cannot contain an interval, and since
all the intervals ¢(i) (i € M <*) have their endpoints in f(K), F C f(K) almost
surely.

Let G; = f~YF), G* = f~Y(F") and G = f~}(F) be (random) compact
sets in K. Then we also have

G"=U{G;:i€ S,lil=n} (neN)

and
G=[)aG"
neN

We claim that G has Hausdorff dimension at least logm/log M almost surely.
The key point in our construction was that A(G;) = 1/M /!, and we also know
that A(G; N Gir) = 0 provided that i # i’ and |i| = |i’|. Note that A\(G¥) =
(m/M)E.

We define random Borel measures p on R by

pe(H) = A(H N G*) - (M/m)*,
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or equivalently,
(2) e = (M/m)* N (k € N).

Hence, ju; is a probability measure with support G* C K.

Let 0 < t < logm/log M be fixed. We would like to give an upper bound for
the expected value of the t-energy of ug. To do this, first we need to calculate
some basic probability. We know that P(i € S) = (m/M)! for every i € M<v.
How much is P(i € S, i € S) if |i| = |[¢| = k7 Let ¢ A’ denote the nearest

common ancestor of ¢ and ¢’ in the tree M <%, and let | = I(z,i) = |i Ai|;
that is, [ is the largest integer for which ig = i, i1 = 4}, ..., 441 = 4;_, hold
(0<1<k).

Piie S, i €S)=P((i; € X4,
and (if,1; € Xio,rsiv_1))

for every 0 < j <1-1)

»»»»» ij-1)

and (i; € X(i,,....i,_,) for every [ +1<j <k —1),

and (i € Xyt forevery l+1<j <k — 1)).
The random variables X; are independent, so this probability is
7<m)l m(mfl) (m)k—l—l(m)k‘—l—l
C\M/) M(M—-1)\M M
ma2k—I-1 m — 1 m 2k—1
- (M) M-—1° (M)

provided that | < k, that is, 7 # ¢/, but the upper estimate clearly holds in the
case i =i’ (I =k) as well.

3)

A

By (2), for any ¢ of length k we have

(4) [k

() NG, i ies
i 0 if ¢S

Applying first that supp ur = GF is contained in Ujij=1Gi, and then (4) and

3);
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EIt(,Uk)

—E (/ |z — |~ dpg(x) duk(y))

=E| Y //,|x—y| dpk () dp(y)

lil=ld'|=F

(5) Ji|= \z\ k </ /,|x7y| “dp(x) dpr(y ))
= > Plies, i’eS)/Gi/ﬂ — (%)k<%)de(;ﬂ)dA(y)

il =17 =k
m2k=1) /M 2K i
<Y GG L L e awan
=17 =k
M 1(3,i") B
- Y (%) [ [ eorawan
it=tl=k Gi /Gy

We denoted the nearest common ancestor of ¢ and ¢’ by ¢ A ¢/, let us also use
the brief notation h < i A4 if h is a common ancestor of 7 and i’. Starting with
(5) and then applying Lemma 2.3,

s X ()] [ v a@a)

Jil=Ii'| =k
o =3l AA@) AA(Y)
BT £ Lo
i:i’_k
gi(%)llz > [ et awmaw
oy
==k

M;r

> ( ) Z/Gh/Ghmm L) dA(y)

\hl l

l

Il
o
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k M !
gZ(—) S e (G
=0 m h
|h|=1
k M l 1 2—t
=> () X ()
=0 h
|h]=1
k l 2—t
M\' ., (1
> () M (5p)
=0
k Mt
()
m
=0
> Mt ldef
Szct (H) = C(taM)m)a
=0

where ¢(t, M, m) is finite whenever M*/m < 1, that is, t < logm/log M.
By Fatou’s lemma,

E likminflt(uk) < likminfEIt(uk) < c(t, M,m),

thus liminfy, oo It (pg) is almost surely finite.

Since the probability measures uy are supported on the same compact set K,
every sequence of them has a weakly convergent subsequence. So we can choose
a sequence of integers k; such that

lim I;(px;) = likm inf Iy (pg)

Jj—oo

and that pg, is weakly convergent. Let pu = lim;_. o pig; -
Since supp jux; = G*i and G° D G' 5 G? O - - -, the weak limit p is supported
on [, G* = G. Applying Lemma 2.2,

Ii(p) < liminf Iy (pr,) = likm inf I (),
j—oo —00

which is almost surely finite. Therefore, the compact set G almost surely carries
a measure p with finite t-energy, for any ¢t < logm/log M. Thus the Hausdorff
dimension of the set G is at least logm/log M almost surely.

By Proposition 3.1, almost surely both of the inequalities dimF' <logm/log M
and dim G > logm/log M hold. Hence, there exists a compact set G C K such
that dim G > logm/log M and dim f(G) < logm/log M.
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For d = 0 or d = 1 the statement of the theorem is trivial, so let 0 < d < 1
be arbitrary. Let

logm
E= TM>3,2<m<M-1
{1ogM z32sms }’

this is a countable dense set in (0,1). We constructed compact sets G for
every e € E such that G. is of dimension at least e and f(G,) is of dimension
at most e. Let G = |J,.,Ge. Clearly G is a Borel set of dimension at least
d, and f(G) = U, f(Ge) is of dimension at most d. It is well-known that G
contains compact subsets C,, of dimension at least d — 1/n, and, clearly, we can
require that C, have diameter at most 1/n. Let C' be the closure of | J,, Chy,
then C \ J,, Cy is at most one point. Thus C' C K, dimC = d, and clearly
dim f(C) < d for the compact set C, which proves the theorem. ]

5. Generalisation of Theorem 1.2

In this section we shall prove Theorem 1.4. Our first step is to extend Theo-
rem 1.2 in the following way:

Cram 5.1: Let f :[0,1] — R be a Borel function. For every 0 < d < 1 there
exists a compact set C C R such that dim C' = d and dim f(C) < d-dim f([0, 1]).

This is a strengthening of Theorem 1.2 if the image set of f has dimension
smaller than 1. To prove Claim 5.1, it is clearly enough to show the following:

CLAIM 5.2: Suppose that K C R is a compact set of positive Lebesgue measure
and f : K — R is continuous. For every 0 < d < 1 there exists a compact set
C C K such that dimC = d and dim f(C) < d - dim f(K).

To prove this claim we modify the upper estimate we presented in Section 3.

Definition 2: Let ¢ be a representation of M <. The support of this represen-
tation is the set

o0

Ky = Ufoli) i e M= i] = &},

k=0

and the dimension of the representation is the dimension of K.
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Recall that if S is a random m-adic subtree of M <%, then we define the

random set
F=()H{s):i€S | =k}
k=0

PROPOSITION 5.3: For any representation of M <% of dimension (3, the random
closed set F defined above has Hausdorff dimension at most logm/log M - (3
almost surely.

Proof. The case 3 =1 is already proved in Proposition 3.1, so we may assume
that 8 < 1 and thus K, (the support of the representation) is a nowhere dense
compact and perfect set. Hence considering any infinite branch in M <%, the
diameter of the corresponding intervals tends to zero.

It is easy to see that for each ¢ € M <%,

P(i € S and ¢(i) N F # 0) =0,
thus
(6) P(4(3) N F # 0) = P(i € S) = (m/M)".

Fix any 8 < t < 1. Since H*(K,) = 0, for any € > 0 we can choose a finite
collection of disjoint open intervals Z covering K4 such that ) -, (diam [ )¢ <e,
and that each interval I € 7 intersects K.

Fix an I € T temporarily. Consider the longest multi-index i € M <% for
which ¢(i) D I N K.

At first let us suppose that ¢ has a child ¢; for which ¢(iy) C I. Set I; = |i],
thus |i] =I5 + 1. From (6) we obtain

B(INF #0) < B(6(i) N F #0) = (m/M)".

Now suppose that ¢ has no child i; for which ¢(i;y) C I. Then it is easy to
check that 7 has two children 7; and 75 such that

(1) INKyC (i) Ugliz) and (i) NINKs#0 (j=1,2).

Let i be one of the nearest descendants of i; for which ¢(:%/) C I holds (j =
1,2). Let i’ be the parent of i/ (j = 1,2). It is easy to see that

(8) ¢(ij)ﬂIﬁK¢:¢(i})ﬁIﬂK¢ (j:1,2),
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since, otherwise, we have ¢(i;) C I or ¢(h) C I for asibling h of i, contradicting
the choice of i7/. By (7) and (8) we obtain

9) INKy C ¢liy) U e(iy).

Set I = min(|i}], |i3|), and let i; be 7 (j = 1 or 2) such that |i;| = [y +1. From
(9) and (6) we obtain that

-/

li3] li5 ]
P(INF #0) SP(eG) NF £0or o) NF £0) < (32) "+ (37)
m\
<2(57) -
Thus, for all I € Z, we defined I; € N and i; of length I; + 1 such that
0 # ¢(iy) C I and
(10) P(INF #0) <2(m/M)".

Since the intervals I € Z are disjoint, the nodes i; form an anti-chain in M <%;
that is, none of them is an ancestor of any other. Thus

1
> T <1

IeT
hence
1
(11) Z Ml <M.
IeT

Let s = logm/log M - t, hence s < t and mt/$ = M. Now cover the random
set F' C K4 with those intervals I € Z which intersect F'. By (10),

E(HS(F) < SOBUNF £0) - (diam 1) < 32 (1) (@ 1)
I1eT IeT
(m“'t/s - (diam I)t)s/t
cM ’

(12)

=2c Z
IeT

where we choose cso that ), ; CM;U = 1 holds, hence ¢ < M by (11). Applying
Jensen’s inequality to the concave function x — x°/* and using m‘/* = M we
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have
(13)

(mlrt/s . (diam I)t)s/t mlrt/s . (diam I)* s/t
202 cMlr §26<Z ¢ M )
IeT IeT

= 2c< > % - (diam I)t) B

IeT

s/t
= 2cls/t ( > (diam I)t)

Iel

s/t
< 2M<Z(diam[)t> < 2Mes/t < 2Me.
IeT
Because € was arbitrarily small, by (12) and (13) we obtain that E(HZ (F)) =0
for every s > 3 -logm/log M, since 3 < t < 1 was arbitrary. This implies that
the dimension of F' is at most 3 - logm/log M almost surely. |

Proof of Claim 5.2. In the proof of Theorem 1.3 in Section 4 we used a repre-
sentation ¢ which had its support in f(K). So that proof with Proposition 5.3
(instead of Proposition 3.1) instantly gives a compact set C C K of Haus-
dorff dimension d such that f(C) has Hausdorff dimension at most d-dim f(K)
(instead of d). |

CLAIM 5.4: Let A C R be compact, f: A — R Borel, dimA > 0, and 0 < s <
dim A. For every 0 < d <1 there exists a Borel set B C A such that

dimB >d-s and dim f(B) <d-dim f(A).

Proof. 1t is well-known (see e.g., [3]) that for every s < dim A there exist a
probability measure v with suppr C A and a positive constant ¢ such that for
every x,y € A we have

(14) v([z,y]) <clz -yl

Let us define the continuous function ¢ : A — [0,1] and the Borel function
X : [0,1] — A by setting

P(x) = V((—oo,ac]),
x(y) = min{z : (z) = y}.
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Thus ) o x is the identity of [0, 1]. It is easy to check that (14) implies that for
every set H C [0, 1],

(15) dim x(H) > s - dim H.

Apply Claim 5.1 to the Borel function f o x : [0,1] — R. We get that for
every 0 < d <1 there exists a compact set C' C [0, 1] such that

dimC =d and dim f(x(C)) <d-dim f(A).
Put B = x(C). (This is a Borel set, since B = ¢~ *(C)N{z € A : x(¢(z)) = x}.)
Applying (15),

dimB>d-s and dim f(B)<d-dim f(A4),
which proves the claim. |

CrLAamM 5.5: Let A C R be a Borel set and let f : A — R be Borel. For every
0 < d <1 there exists a Borel set B C A such that dimB = d - dim A and
dim f(B) < d-dim f(A).

Proof. We may suppose that dim A > 0. For every sufficiently large positive
integer n choose a compact set A,, C A of dimension > dim A — 1/n, and apply
Claim 5.4 to 4,, and s = dim A — 2/n > 0. We obtain a Borel set B,, C A,, for
which

dim B, >d-(dim A —2/n) and dim f(B,) <d-dim f(A,) <d-dim f(A).

Now any Borel subset of  J,, B, of dimension d - dim A is an appropriate choice
for B. |

LEMMA 5.6: For each positive integer n there exists a Borel set B,, C R and a
Borel bijection p,, : B,, — R"™ such that for every set H C B, we have

dimp,(H) =n-dim H,
moreover, for every 0 < d <1 and H C B,,
0<HYH) < 00 <= 0<H™(p,(H)) < o0.

Proof. For z € R let di(x) € {0,1,...,9} (k € Z) denote the digits of x in the
decimal number system; that is,

x = de(z) -10F,

keZ
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where di(z) =0 if k > ko for some ko, and liminfy_,oo d—(z) # 9. Let

B,={zxeR:Vje{0,1,...,n—1} liminf d;_,;(z) # 9},
ph(x) = djgni(x) - 10° (j€{0,1,...,n—1})
i€z
and
Pa(@) = (Pp (@), o (@), i~ ().
Hence, p,, is a Borel bijection between B, and R™. It is easy to check that p,

satisfies all the requirements, see [4, Theorem 49] and its proof for a hint. |

Proof of Theorem 1.4. Suppose that A C R™ is a Borel set and f: A — R™ is
Borel measurable. Let d € [0, 1] be arbitrary. Let p,, and p,, be as in Lemma 5.6.
Applying Claim 5.5 to the Borel set p;,1(A) C R and Borel mapping

Pk o Fopalta i (A) = bl (F(A))
we obtain a Borel set B C p,,*(A) such that
dim B = d - dimp, }(4) and dimp,'o fop,(B) <d-dimp, (f(A)).
Using Lemma 5.6 four times we get that
dimp,(B) = d-dim(A) and dim f(p,(B)) < d-dim f(A)
hold for the Borel set p,(B) C A. |

Let B,, denote the o-algebra of Borel subsets of R™. Lemma 5.6 implies that
the generalisation of Theorem 1.1 in R™ holds.

THEOREM 5.7: For every 0 < d; < dy < n the measure spaces (R, B,,, H")
and (R™, B, H%) are not isomorphic. Moreover, there does not exist a Borel
bijection f : R™ — R"™ such that for any Borel set B C R™

0 < H"(B) < 00 <= 0 < H%(f(B)) < oo.
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